Abstract

DNA adduct formation in humans is a promising biomarker for elucidating the molecular epidemiology of cancer. For detection of DNA adducts, the most widely used methods include mass spectroscopy, fluorescence spectroscopy, immunoassays and 32P-postlabelling. Among them, the 32P-postlabelling method appears to meet best the criteria of sensitivity and amount of DNA needed, and, therefore, is one of the most appropriate methods for biomonitoring of human DNA adducts. Most classes of carcinogens have been subjected to 32P-postlabelling analysis, ranging from bulky and/or aromatic compounds to small and/or aliphatic compounds; it has also been used, with modifications, to detect apurinic sites in DNA, oxidative damage to DNA, UV-induced photodimers and, to a lesser extent, DNA damage caused by cytotoxic drugs. It has been used in human biomonitoring studies to detect DNA damage from occupational exposure to carcinogens, and also from environmental (i.e. non-occupational) exposures. It has also led to the discovery of the presence of numerous modifications in DNA arising from endogenous processes. The principle of the method is the enzymatic digestion of DNA to nucleotides, 5'-labelling of these nucleotides with an isotopically labelled phosphate group, and the resolution, detection and quantitation of the labelled products. Since the development of the original procedure in the early 1980s, many methods have been developed to increase the sensitivity by enrichment of modified nucleotides prior to labelling. The review presents the individual 32P-postlabelling techniques (standard procedure, enrichment methods) and a critical evaluation of these assays, besides reviewing the applications of the method to different DNA modifications, and its utilization in human biomonitoring studies. A review with 179 references.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call