Abstract

A bi-enzymatic biosensor for monitoring of dihydroxyacetone production during oxidation of glycerol by bacterial cells of Gluconobacter oxydans is presented. Galactose oxidase oxidizes dihydroxyacetone efficiently producing hydrogen peroxide, which reacts with co-immobilized peroxidase and ferrocene pre-adsorbed on graphite electrode. This mediator-based bi-enzymatic biosensor possesses very high sensitivity (4.7 µA/mM in phosphate buffer), low detection limit (0.8 µM, signal/noise = 3), short response time (22 s, 95% of steady-state) and broad linear range (0.002-0.55 mM in phosphate buffer). The effect of pH, temperature, type of buffer, as well as different stabilizers (combinations of a polyelectrolyte and a polyol) on the sensor performance were carefully optimized and discussed. Dihydroxyacetone produced during a batch conversion of glycerol by the pectate-immobilized bacteria in an air-lift reactor was determined by the biosensor and by reference spectrophotometric method. Both methods were compared and were in a very good correlation. The main advantage of the biosensor is a very short time needed for sample analysis (less than 1 min).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.