Abstract

Fiber Bragg grating sensors (FBGs) are promising for structural health monitoring (SHM) of composite structures in space owing to their lightweight nature, resilience to harsh environments, and immunity to electromagnetic interference. In this paper, we investigated the influence of low Earth orbit (LEO) conditions on the integrity of composite structures with embedded optical fiber sensors, specifically FBGs. The LEO conditions were simulated by subjecting carbon fiber-reinforced polymer (CFRP) coupons to 10 cycles of thermal conditioning in a vacuum (TVac). Coupons with embedded optical fibers (OFs) or capillaries were compared with reference coupons without embedded OFs or capillaries. Embedded capillaries were necessary to create in situ temperature sensors. Tensile and compression tests were performed on these coupons, and the interlaminar shear strength was determined to assess the influence of TVac conditioning on the integrity of the composite. Additionally, a visual inspection of the cross-sections was conducted. The impact on the proper functioning of the embedded FBGs was tested by comparing the reflection spectra before and after TVac conditioning and by performing tensile tests in which the strain measured using the embedded FBGs was compared with the output of reference strain sensors applied after TVac conditioning. The measured strain of the embedded FBGs showed excellent agreement with the reference sensors, and the reflection spectra did not exhibit any significant degradation. The results of the mechanical testing and visual inspection revealed no degradation of the structural integrity when comparing TVac-conditioned coupons with non-TVac-conditioned coupons of the same type. Consequently, it was concluded that TVac conditioning does not influence the functionality of the embedded FBGs or the structural integrity of the composite itself. Although in this paper FBG sensors were tested, the results can be extrapolated to other sensing techniques based on optical fibers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.