Abstract

The analytical methods for the determination of the amine solvent properties do not provide input data for real-time process control and optimization and are labor-intensive, time-consuming, and impractical for studies of dynamic changes in a process. In this study, the potential of nondestructive determination of amine concentration, CO2 loading, and water content in CO2 absorption solvent in the gas processing unit was investigated through Fourier transform near-infrared (FT-NIR) spectroscopy that has the ability to readily carry out multicomponent analysis in association with multivariate analysis methods. The FT-NIR spectra for the solvent were captured and interpreted by using suitable spectra wavenumber regions through multivariate statistical techniques such as partial least square (PLS). The calibration model developed for amine determination had the highest coefficient of determination (R2) of 0.9955 and RMSECV of 0.75%. CO2 calibration model achieved R2 of 0.9902 with RMSECV of 0.25% whereas the water calibration model had R2 of 0.9915 with RMSECV of 1.02%. The statistical evaluation of the validation samples also confirmed that the difference between the actual value and the predicted value from the calibration model was not significantly different and acceptable. Therefore, the amine, CO2, and water models have given a satisfactory result for the concentration determination using the FT-NIR technique. The results of this study indicated that FT-NIR spectroscopy with chemometrics and multivariate technique can be used for the CO2 solvent monitoring to replace the time-consuming and labor-intensive conventional methods.

Highlights

  • Natural gas is referring to the fossil fuel gas that is found in the oil and/or gas fields [1]

  • For a conventional gas processing, CO2 is removed in an acid gas removal unit (AGRU) using aqueous solvent absorption processes [5]

  • The CO2 absorption solvent does contain active solvent, absorbed gas, and water, and contain heat stable salts and solvent degradation products [8]. e data on the CO2 loading and active ingredient concentration of solvents and water content are essential for the CO2 solvent absorption operation monitoring and in various experimental conditions studying CO2 absorption

Read more

Summary

Introduction

Natural gas is referring to the fossil fuel gas that is found in the oil and/or gas fields [1]. E data on the CO2 loading (mol CO2/mol amine) and active ingredient concentration of solvents and water content are essential for the CO2 solvent absorption operation monitoring and in various experimental conditions studying CO2 absorption. This solvent analysis was performed manually by the use of multiple analytical methods for different parameters which are relatively laborintensive and time-consuming [9]. The most popular analytical method for determining the acid gas concentration in amine solvent uses wet chemistry titration. E objective of this work is to develop a method for monitoring the CO2 solvent in the natural gas processing using FT-NIR technique. A robust calibration model will be developed for the solvent analysis with different solvent concentrations, CO2 loading, and water content

Experimental
Solvent Analysis
Reference Method Analysis
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.