Abstract

Carbon capture & storage (CCS) is one of the most promising technologies for greenhouse gas (GHG) management. However, an unsolved issue of CCS is the development of appropriate long-term monitoring systems for leak detection of the stored CO2. To complement already existing monitoring infrastructure for CO2 storage areas, and to increase the granularity of gas concentration measurements, a quickly deployable, mobile measurement device is needed. In this paper, we present an autonomous gas-sensitive micro-drone, which can be used to monitor GHG emissions, more specifically, CO2. Two different measurement strategies are proposed to address this task. First, the use of predefined sensing trajectories is evaluated for the task of gas distribution mapping using the micro-drone. Alternatively, we present an adaptive strategy, which suggests sampling points based on an artificial potential field (APF). The results of real-world experiments demonstrate the feasibility of using gas-sensitive micro-drones for GHG monitoring missions. Thus, we suggest a multi-layered surveillance system for CO2 storage areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.