Abstract

The temperature at the surface of the bony recipient site during drilling for orthodontic micro-implant placement was monitored using infrared thermography. The primary objective was to identify proper drilling conditions to allow efficient drilling without raising the bone temperature above the threshold temperature of 44oC to 47oC. Bovine ribs were selected to provide cortical bone of a similar quality to the human mandible. Four drilling conditions combining 2 motor speeds (600 and 1200 rpm) and 2 pressure loads (500 g and 1000 g) were established based on clinical practice. Much care was taken to duplicate an oral environment, although no irrigation was used to allow the infrared radiation to transmit without being hindered by cooling water. Thermal images were recorded using a Thermovision 900 system (Amega, Danderryd, Sweden). The results showed that the temperature rise relys significantly on the drilling speed and pressure. When both the drilling speed and the pressure were low, the cortical bone could not be cut. However, increasing either the speed or the pressure resulted in a temperature increase. Drill speed of 600 rpm at the pressure load 1000g produced more or less the same temperature, 40- 45 o C, as when the drill speed was increased to 1200 rpm while keeping the load at 500g. Yet, a temperature as high as 62.4 o C was recorded when combining the high motor speed and high pressure. Most of the temperature rise took place during the initial 5-10 seconds of drilling, indicating that intermittent irrigation at an interval of 5 seconds or less would be of particular importance to minimize possible thermal trauma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call