Abstract

Alcohol-based hand rubs (ABHRs) have found large diffusion during the Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2, thus becoming the most widespread means for hand hygiene. Whereby, it is fundamental to assess the alignment of commercial ABHRs to the indications provided by the principal health agencies regarding alcohol content and possible impurities. In this work, a novel improvement of previous existent methods for the determination of alcohol content in such products was reported. In particular, two alternative sensitive and reproducible methods, such as an electrochemical screen-printed based enzymatic (alcohol oxidase) biosensor and a Headspace Gas Chromatography coupled with Mass Spectrometry (HS-GC/MS) were proposed. The electrochemical device represents a rapid, low-cost and accurate fraud screening method for alcohol-based hand rubs. The second technique confirms, identifies and simultaneously determines ethyl alcohol, isopropyl alcohol, n-propyl alcohol and methyl alcohol, improving their extraction through acidification in the sample pre-treatment step. The developed specific HS-GC/MS method was in-house validated according to ISO/IEC 17025 requirements. Analytical parameters such as limit of detection (LoD 0.13%v/v - 0.17%v/v), limit of quantification (LoQ 0.44% v/v - 0.57% v/v), inter-day repeatability (RSDR 2.1–10.7%) and recovery (80–110%) were assessed. The relative expanded uncertainties range (between 0.1%v/v and 3.4%v/v) for all the analytes were evaluated. Results obtained using the different analytical approaches were compared and indicated that the two data sets were comparable (median; HS-GC/MS, 56%v/v; electrochemical biosensor, 62%v/v) and were not statistically different (one-way ANOVA test; p = 0.062). In addition, a good correlation (95%) was found. This study noticed that only 39% of the tested hand sanitiser products had the recommended average alcohol content, thus highlighting the need for analytical controls on this type of products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.