Abstract

The paper considers the implementation of algorithms for automatic search for signals scattered by meteor trails according to EKB ISTP SB RAS radar data. In general, the algorithm is similar to the algorithms adopted in specialized meteor systems. The algorithm is divided into two stages: detecting a meteor echo and determining its parameters. We show that on the day of the maximum Geminid shower, December 13, 2016, the scattered signals detected by the algorithm are foreshortening and correspond to scattering by irregularities extended in the direction of the meteor shower radiant. This confirms that the source of the signals detected by the algorithm is meteor trails. We implement an additional program for indirect trail height determination. It uses a decay time of echo and the NRLMSIS-00 atmosphere model to estimate the trail height. The dataset from 2017 to 2019 is used for further testing of the algorithm. We demonstrate a correlation in calculated Doppler velocity between the new algorithm and FitACF. We present a solution of the inverse problem of reconstructing the neutral wind velocity vector from the data obtained by the weighted least squares method. We compare calculated speeds and directions of horizontal neutral winds, obtained in the three-dimensional wind model, and the HWM-14 horizontal wind model. The algorithm allows real-time scattered signal processing and has been put into continuous operation at the EKB ISTP SB RAS radar.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.