Abstract

Excimer laser ablation of highly oriented pyrolytic graphite (HOPG) was performed at atmospheric pressure in an N2 and in an air ambient. During the ablation, nanoparticles condensed from the material ejecta, and their size distribution was monitored in the gas phase by a Differential Mobility Analyzer (DMA) in combination with a Condensation Particle Counter (CPC). Size distributions obtained at different laser repetition rates revealed that the interaction between subsequent laser pulses and formed particles became significant above ∼15 Hz. This interaction resulted in laser heating, leading to considerable evaporation and a decrease in the size of the particles. X-ray photoelectron spectroscopy revealed that approximately 8% nitrogen was incorporated into the CNx particles generated in the N2 ambient, and that the nitrogen was mostly bonded to sp3-hybridized carbon. Monodisperse particles were also deposited and were analyzed by means of Raman spectroscopy to monitor size-induced effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.