Abstract
Although multivariate statistical process control has been receiving a well-deserved attention in the literature, little work has been done to deal with multi-attribute processes. While by the NORTA algorithm one can generate an arbitrary multi-dimensional random vector by transforming a multi-dimensional standard normal vector, in this article, using inverse transformation method, we initially transform a multi-attribute random vector so that the marginal probability distributions associated with the transformed random variables are approximately normal. Then, we estimate the covariance matrix of the transformed vector via simulation. Finally, we apply the well-known T 2 control chart to the transformed vector. We use some simulation experiments to illustrate the proposed method and to compare its performance with that of the deleted-Y method. The results show that the proposed method works better than the deleted-Y method in terms of the out-of-control average run length criterion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.