Abstract
Mosquito surveillance programmes are essential to assess the risks of local vector-borne disease outbreaks as well as for early detection of mosquito invasion events. Surveys are usually performed with traditional sampling tools (i.e., ovitraps and dipping method for immature stages or light or decoy traps for adults). Over the past decade, numerous studies have highlighted that environmental DNA (eDNA) sampling can enhance invertebrate species detection and provide community composition metrics. However, the usefulness of eDNA for detection of mosquito species has, to date, been largely neglected. Here, we sampled water from potential larval breeding sites along a gradient of anthropogenic perturbations, from the core of an oil palm plantation to the rainforest on São Tomé Island (Gulf of Guinea, Africa). We showed that (i) species of mosquitoes could be detected via metabarcoding mostly when larvae were visible, (ii) larvae species richness was greater using eDNA than visual identification and (iii) new mosquito species were also detected by the eDNA approach. We provide a critical discussion of the pros and cons of eDNA metabarcoding for monitoring mosquito species diversity and recommendations for future research directions that could facilitate the adoption of eDNA as a tool for assessing insect vector communities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.