Abstract
This research investigated the process efficiency and microbial communities and their diversity in a full-scale wastewater treatment plant (WWTP) fed with petroleum refining wastewater (PRW) that contained toxic hydrocarbon contaminants and carcinogens. Process parameters and bacterial community structures were monitored for six months to create a link between microbial dynamics and influent characteristics of petrochemical wastewater. The WWTP showed a stable process with efficiencies >70% for both soluble chemical oxygen demand (SCOD) and benzene removal. More than 30 genera were identified by metagenomic analysis, and the bacterial populations changed significantly during the operation period. Among them, genera Sulfuritalea (11.9 ± 3.5%), Ottowia (4.3 ± 2.2%), Thauera (3.1 ± 7.2%) and Hyphomicrobium (1.3 ± 0.7%) were dominant and important bacterial genera that may have been responsible for the degradation of aromatic compounds such as benzene and phenol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.