Abstract

This study presents a monitoring method that utilizes 3D object classification to accurately detect mechanical and electrical components of a wind turbine by combining a geometric and statistic feature extractor (GSFE) with a multiview approach. The proposed monitoring method also detect outlier after executing object detection to localize overheat faults in these components with fused Optical or Infrared/LiDAR measurements. The proposed method hasthree key characteristics. First, the proposed outlier detection allocates two extremes of normal and faulty clusters by using 2D object classification/detection model or measuring thestandard deviation of temperature with sensor fusing measurements. Specifically, the outlier detection with sensor fusing measurements extracts the position coordinates andtemperature data to localize overheat faults, effectively detecting an overheat component. Second, the GSFE utilizes a group sampling approach to extract the local geometric feature information from neighboring point clouds, aggregating normal vectors and standard deviation. This method ensures the high accuracy of object classification. Third, a multi-view approach focuses on updating local geometric and statistic features through a graph convolution network, improving the accuracy and robustness of object classification. The proposed outlier detection is verified through overheat/fire field tests. The effectiveness of the proposed 3D object classification method is also validated by using a virtual wind turbine nacelle CAD dataset and a public CAD dataset named ModelNet40. Consequently, the proposed method is practical and effective for monitoring a fire and overheat component because it can accurately detect critical components with only a few virtual datasets because gathering bigdata for training a neural network is extremely difficult.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call