Abstract

BackgroundTissue imaging of treatment-induced metabolic changes is useful for optimizing cancer therapies, but commonly used methods require trade-offs between assay sensitivity and spatial resolution. Nanostructure-Initiator Mass Spectrometry imaging (NIMS) permits quantitative co-localization of drugs and treatment response biomarkers in cells and tissues with relatively high resolution. The present feasibility studies use NIMS to monitor phosphorylation of 3′-deoxy-3′-fluorothymidine (FLT) to FLT-MP in lymphoma cells and solid tumors as an indicator of drug exposure and pharmacodynamic responses.MethodsNIMS analytical sensitivity and spatial resolution were examined in cultured Burkitt’s lymphoma cells treated briefly with Rapamycin or FLT. Sample aliquots were dispersed on NIMS surfaces for single cell imaging and metabolic profiling, or extracted in parallel for LC-MS/MS analysis. Docetaxel-induced changes in FLT metabolism were also monitored in tissues and tissue extracts from mice bearing drug-sensitive tumor xenografts. To correct for variations in FLT disposition, the ratio of FLT-MP to FLT was used as a measure of TK1 thymidine kinase activity in NIMS images. TK1 and tumor-specific luciferase were measured in adjacent tissue sections using immuno-fluorescence microscopy.ResultsNIMS and LC-MS/MS yielded consistent results. FLT, FLT-MP, and Rapamycin were readily detected at the single cell level using NIMS. Rapid changes in endogenous metabolism were detected in drug-treated cells, and rapid accumulation of FLT-MP was seen in most, but not all imaged cells. FLT-MP accumulation in xenograft tumors was shown to be sensitive to Docetaxel treatment, and TK1 immunoreactivity co-localized with tumor-specific antigens in xenograft tumors, supporting a role for xenograft-derived TK1 activity in tumor FLT metabolism.ConclusionsNIMS is suitable for monitoring drug exposure and metabolite biotransformation with essentially single cell resolution, and provides new spatial and functional dimensions to studies of cancer metabolism without the need for radiotracers or tissue extraction. These findings should prove useful for in vitro and pre-clinical studies of cancer metabolism, and aid the optimization of metabolism-based cancer therapies and diagnostics.

Highlights

  • Tissue imaging of treatment-induced metabolic changes is useful for optimizing cancer therapies, but commonly used methods require trade-offs between assay sensitivity and spatial resolution

  • Recent reports suggest that mass spectrometry quantification of FLT metabolism to fluorothymidine monophosphate (FLT-MP) is useful for monitoring the disposition of tumor imaging agents in studies of cellular proliferation without the need for radioactivity, which is required for positron emission tomography (PET) studies with [18F]-FLT [11,12]

  • The results presented here demonstrate that Nanostructure-Initiator Mass Spectrometry imaging (NIMS) provides sufficient analytical sensitivity and spatial resolution to detect relevant pharmacodynamic responses in pre-clinical models, and demonstrate the potential of mass-based approaches for optimizing cancer diagnostics and tumor imaging

Read more

Summary

Introduction

Tissue imaging of treatment-induced metabolic changes is useful for optimizing cancer therapies, but commonly used methods require trade-offs between assay sensitivity and spatial resolution. Nanostructure-Initiator Mass Spectrometry imaging (NIMS) permits quantitative co-localization of drugs and treatment response biomarkers in cells and tissues with relatively high resolution. The present feasibility studies use NIMS to monitor phosphorylation of 30-deoxy-30-fluorothymidine (FLT) to FLT-MP in lymphoma cells and solid tumors as an indicator of drug exposure and pharmacodynamic responses. Thymidine kinase (TK1) activity is an effective and well-established model for monitoring cancer cell cycle status and proliferation potential. This model is ideal for testing the robustness of LC-MS/MS and NIMS analysis for these types of studies as selective metabolite precursors can be assessed, an expansion from early successes using radiotracers to monitor specific metabolites [2]. Recent reports suggest that mass spectrometry quantification of FLT metabolism to FLT-MP is useful for monitoring the disposition of tumor imaging agents in studies of cellular proliferation without the need for radioactivity, which is required for positron emission tomography (PET) studies with [18F]-FLT [11,12]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call