Abstract

This protocol describes the nonlinear optical phenomenon known as second-harmonic generation (SHG) and discusses its special attributes for imaging membrane-potential changes in single cells and multicellular preparations. Undifferentiated N1E-115 mouse neuroblastoma cells are used as a model cellular system for membrane electrophysiology. Styryl and naphthylstyryl dyes, also known as hemicyanines, are a class of electrochromic membrane-staining probes that have been used to monitor membrane potential by fluorescence; they also produce SHG images of cell membranes with SHG intensities that are sensitive to voltage. These experiments allow for the precise characterization of the voltage sensitivity of SHG and identification of the optimal wavelength for the incident laser fundamental light. This protocol presents the steps for the culture, staining, patching, and imaging of cells. The details of the imaging system and the measurements obtained are discussed, as are the prospects of this technology for imaging membrane potential changes in neuronal preparations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.