Abstract

The Jason-1 Microwave Radiometer (JMR) provides measurements of the wet troposphere content to correct the altimetric range measurement for the associated path delay. Various techniques are used to monitor the JMR wet troposphere path delays, with measurements of zenith troposphere content from terrestrial GPS sites used as an independent verification technique. Results indicate that an unexpected offset of approximately +4.1 ± 1.2 mm (drier) emerged in the JMR measurements of wet path delay between cycles 28–32 of the Jason-1 mission, and that the measurements may be drifting at a rate of approximately −0.5 mm/year. These anomalies are shown to be caused by a −0.7 K offset in 23.8 GHz brightness temperatures between cycles 28–32, and a 0.16 ± 0.04 and −0.45 ± 0.08 K/year drift in the 18.7 and 34.0 GHz brightness temperatures, respectively. Intercomparison of the 3-Hz JMR brightness temperature measurements show that they have been drifting with respect to each other, and that a dependence on yaw-steering regime is present in these measurements. An offset of 0.5 m/s between cycles 28–32 and a drift of approximately 0.5 m/s/year in the JMR wind speed measurements is also associated with these anomalies in the 1-Hz brightness temperatures. These errors in JMR wind speeds presently have a negligible impact on the retrieved JMR path delays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call