Abstract

The bioluminescent resonance energy transfer (BRET) assay has been extensively used in cell-based and in vivo imaging systems for detecting protein-protein interactions in the native environment of living cells. These protein-protein interactions are essential for the functional response of many signaling pathways to environmental chemicals. BRET has been used as a toxicological tool for identifying chemicals that either induce or inhibit these protein-protein interactions. This chapter focuses on describing the toxicological applications of BRET and its optimization as a high-throughput detection system in live cells. Here we review the construction of BRET fusion proteins, describe the BRET methodology, and outline strategies to overcome obstacles that may arise. Furthermore, we describe the advantage of BRET over other resonance energy transfer methods for monitoring protein-protein interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.