Abstract

An object-based image analysis (OBIA) technique is replacing traditional pixel-based methods and setting a new standard for monitoring land-use/land-cover changes (LUCC). To date, however, studies have focused mainly on small-scale exploratory experiments and high-resolution remote-sensing images. Therefore, this study used OBIA techniques and medium-resolution Chinese HJ-CCD images to monitor LUCC at the provincial scale. The results showed that while woodland was mainly distributed in the west, south, and east mountain areas of Hunan Province, the west had the largest area and most continuous distribution. Wetland was distributed mainly in the northern plain area, and cultivated land was distributed mainly in the central and northern plains and mountain valleys. The largest impervious surface was the Changzhutan urban agglomerate in the northeast plain area. The spatial distribution of land cover in Hunan Province was closely related to topography, government policy, and economic development. For the period 2000–2010, the areas of cultivated land transformed into woodland, grassland, and wetland were 183.87 km2, 5.57 km2, and 70.02 km2, respectively, indicating that the government-promoted ecologically engineered construction was yielding some results. The rapid economic growth and urbanization, high resource development intensity, and other natural factors offset the gains made in ecologically engineered construction and in increasing forest and wetland areas, respectively, by 229.82 km2 and 132.12 km2 from 2000 to 2010 in Hunan Province. The results also showed large spatial differences in change amplitude (LUCCA), change speed (LUCCS), and transformation processes in Hunan Province. The Changzhutan urban agglomerate and the surrounding prefectures had the largest LUCCA and LUCCS, where the dominant land cover accounted for the conversion of some 189.76 km2 of cultivated land, 129.30 km2 of woodland, and 6.12 km2 of wetland into impervious surfaces in 2000–2010. This conversion was attributed to accelerated urbanization and rapid economic growth in this region.

Highlights

  • Land-use/land-cover change (LUCC) is one of the most direct signals used to determine the impact of anthropogenic activity on the ecosystem, and it provides the link between human socioeconomic activities and natural ecological processes [1,2]

  • The spatial distribution of land cover in Hunan Province was closely related to topography, government policy, and economic development [6,23,37]

  • The results showed that it was fully feasible to monitor large-scale LUCC using medium-resolution HJ-CCD remote-sensing images and object-based image analysis (OBIA); 2

Read more

Summary

Introduction

Land-use/land-cover change (LUCC) is one of the most direct signals used to determine the impact of anthropogenic activity on the ecosystem, and it provides the link between human socioeconomic activities and natural ecological processes [1,2]. This process is closely related to the processes of terrestrial surface material cycle and life and has a direct impact on the biosphere, atmosphere interaction, biological diversity, surface radiation force, biogeochemical cycle, and the sustainable utilization of resources and the environment [3,4,5]. More information than pixels can be obtained only when the image is segmented into homogeneous objects, which can further improve the monitoring accuracy [11,12]

Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call