Abstract
This article reports that the kinetics of surface-initiated atom transfer radical polymerization can be quantified by the quartz crystal microbalance with dissipation (QCM-D) technique. The kinetics of in situ growth of poly(oligoethylene glycol methylmethacrylate) monitored on a gold-coated QCM-D sensor chip revealed that changes in the experimentally observed frequency (DeltaF) and dissipation (DeltaD) as a function of polymerization time were a function of the initiator density, and that the experimental response could be predicted from a continuum model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.