Abstract

We demonstrate single-molecule-level features using near-field optical microscopy on bacteriorhodopsin (bR), a membrane protein that functions as a light-driven proton pump. The photophysical properties of bR are utilized in this imaging technique, using a combination of photoexcitation sources, to accurately identify the active regions and quantify the optical parameters. The studies of bR monolayers are carried out on inert quartz substrates as well as active conducting polymer (polyaniline) substrates. The substrate also plays an important role in the photocycle quantum efficiencies. We speculate on mechanisms governing the higher near-field absorption strength of bR molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.