Abstract

Macrophages are key cells of the immune system. During phagocytosis, the macrophage engulfs a foreign bacterium, virus, or particle into a vacuole, the phagosome, wherein oxidants are produced to neutralize and decompose the threatening element. These oxidants derive from in situ production of superoxide and nitric oxide by specific enzymes. However, the chemical nature and sequence of release of these compounds is far from being completely determined. The aim of the present work was to study the fundamental mechanism of oxidant release by macrophages at the level of a single cell, in real time and quantitatively. The tip of a microelectrode was positioned at a micrometric distance from a macrophage in a culture to measure oxidative-burst release by the cell when it was submitted to physical stimulation. The ensuing release of electroactive reactive oxygen and nitrogen species was detected by amperometry and the exact nature of the compounds was characterized through comparison with in vitro electrochemical oxidation of H2O2, ONOO-, NO*, and NO2(-) solutions. These results enabled the calculation of time variations of emission flux for each species and the reconstruction of the original flux of production of primary species, O2*- and NO*, by the macrophage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.