Abstract

Heavy metal contamination in soils and vegetation poses a significant problem due to its toxicity and persistence. Toxic effects on vegetation include not only impaired growth, reduced yields, and even plant death but also biodiversity loss and ecosystem degradation. Addressing this issue requires comprehensive monitoring and remediation efforts to mitigate the environmental, human health, and ecological impacts. This review examines the state-of-the-art methodologies and advancements in remote sensing applications for detecting and monitoring heavy metal contamination in soil and its subsequent effects on vegetation. By synthesizing the current research findings and technological developments, this review offers insights into the efficacy and potential of remote sensing for monitoring heavy metal contamination in terrestrial ecosystems. However, current studies focus on regression and AI methods to link spectral reflectances and indices to heavy metal concentrations, which poses limited transferability to other areas, times, spectral discretizations, and heavy metal elements. We conclude that one important way forward is the more thorough understanding and simulation of the related physico-chemical processes in soils and plants and their effects on the spectral signatures. This would offer a profound basis for remote sensing applications for individual circumstances and would allow disentangling heavy metal effects from other stressors such as droughts or soil salinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.