Abstract

Groundwater provides much of the world's potable water. Nevertheless, groundwater quality monitoring programmes often rely on a sporadic, slow, and narrowly focused combination of periodic manual sampling and laboratory analyses, such that some water quality deficiencies go undetected, or are detected too late to prevent adverse consequences. In an effort to address this shortcoming, we conducted enhanced monitoring of untreated groundwater quality over 12 months (February 2019–February 2020) in four shallow wells supplying potable water in Finland. We supplemented periodic manual sampling and laboratory analyses with (i) real-time online monitoring of physicochemical and hydrological parameters, (ii) analysis of stable water isotopes from groundwater and nearby surface waters, and (iii) microbial community analysis of groundwater via amplicon sequencing of the 16S rRNA gene and 16S rRNA. We also developed an early warning system (EWS) for detecting water quality anomalies by automating real-time online monitoring data collection, transfer, and analysis – using electrical conductivity (EC) and turbidity as indirect water quality indicators. Real-time online monitoring measurements were largely in fair agreement with periodic manual measurements, demonstrating their usefulness for monitoring water quality; and the findings of conventional monitoring, stable water isotopes, and microbial community analysis revealed indications of surface water intrusion and faecal contamination at some of the studied sites. With further advances in technology and affordability expected into the future, the supplementary methods used here could be more widely implemented to enhance groundwater quality monitoring – by contributing new insights and/or corroborating the findings of conventional analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.