Abstract

Protected areas are fundamental to biodiversity conservation, but there is growing recognition of the need to extend beyond protected areas to meet the ecological requirements of species at larger scales. Landscape-scale conservation requires an evaluation of management impact on biodiversity under different land-use strategies; this is challenging and there exist few empirical studies. In a conservation landscape in northern Republic of Congo we demonstrate the application of a large-scale monitoring program designed to evaluate the impact of conservation interventions on three globally threatened species: western gorillas, chimpanzees and forest elephants, under three land-use types: integral protection, commercial logging, and community-based natural resource management. We applied distance-sampling methods to examine species abundance across different land-use types under varying degrees of management and human disturbance. We found no clear trends in abundance between land-use types. However, units with interventions designed to reduce poaching and protect habitats - irrespective of land-use type - harboured all three species at consistently higher abundance than a neighbouring logging concession undergoing no wildlife management. We applied Generalized-Additive Models to evaluate a priori predictions of species response to different landscape processes. Our results indicate that, given adequate protection from poaching, elephants and gorillas can profit from herbaceous vegetation in recently logged forests and maintain access to ecologically important resources located outside of protected areas. However, proximity to the single integrally protected area in the landscape maintained an overriding positive influence on elephant abundance, and logging roads – even subject to anti-poaching controls - were exploited by elephant poachers and had a major negative influence on elephant distribution. Chimpanzees show a clear preference for unlogged or more mature forests and human disturbance had a negative influence on chimpanzee abundance, in spite of anti-poaching interventions. We caution against the pitfalls of missing and confounded co-variables in model-based estimation approaches and highlight the importance of spatial scale in the response of different species to landscape processes. We stress the importance of a stratified design-based approach to monitoring species status in response to conservation interventions and advocate a holistic framework for landscape-scale monitoring that includes smaller-scale targeted research and punctual assessment of threats.

Highlights

  • It is widely recognized that effective conservation planning needs to consider both the ecological requirements of wildlife as well as the economic needs of people [1,2]

  • We assess the extent to which the data improve our understanding of (a) the spatial processes governing the distribution of great apes and elephants at the landscape scale (Table 2), and, (b) the effectiveness of different management strategies in conserving ape and elephant populations, and suggest design improvements for long-term monitoring programs

  • Land-use type - protection, logging concession and community-based natural resource management itself had no consistent effect on the abundance of different species

Read more

Summary

Introduction

It is widely recognized that effective conservation planning needs to consider both the ecological requirements of wildlife as well as the economic needs of people [1,2]. Protected areas continue to form the cornerstone of biodiversity conservation, but for many wide-ranging or migratory species, strict protection is often not possible over large spatial scales. Under this scenario has evolved the concept of the conservation landscape [3]; a mosaic of protected areas embedded in a matrix of multiple land-use types employing a variety of different management strategies. Monitoring the status of wildlife under different management strategies and evaluating the success of these strategies in meeting conservation or policy objectives is of increasing interest to practitioners managing biodiversity at the landscape scale [5,6,7] In this context the design of wildlife monitoring programs is challenging. Monitoring programs targeted at evaluating different hypotheses about wildlife responses to management, are an integral part of an adaptive management process (sensu [14]); monitoring programs in and of themselves should provide information with which to refine these predictions as part of an iterative learning process [10,15,16]

Objectives
Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call