Abstract

BackgroundMobility impairment is common in people with multiple sclerosis (PwMS) and there is a need to assess mobility in remote settings. Here, we apply a novel wireless, skin-mounted, and conformal inertial sensor (BioStampRC, MC10 Inc.) to examine gait characteristics of PwMS under controlled conditions. We determine the accuracy and precision of BioStampRC in measuring gait kinematics by comparing to contemporary research-grade measurement devices.MethodsA total of 45 PwMS, who presented with diverse walking impairment (Mild MS = 15, Moderate MS = 15, Severe MS = 15), and 15 healthy control subjects participated in the study. Participants completed a series of clinical walking tests. During the tests participants were instrumented with BioStampRC and MTx (Xsens, Inc.) sensors on their shanks, as well as an activity monitor GT3X (Actigraph, Inc.) on their non-dominant hip. Shank angular velocity was simultaneously measured with the inertial sensors. Step number and temporal gait parameters were calculated from the data recorded by each sensor. Visual inspection and the MTx served as the reference standards for computing the step number and temporal parameters, respectively. Accuracy (error) and precision (variance of error) was assessed based on absolute and relative metrics. Temporal parameters were compared across groups using ANOVA.ResultsMean accuracy±precision for the BioStampRC was 2±2 steps error for step number, 6±9ms error for stride time and 6±7ms error for step time (0.6–2.6% relative error). Swing time had the least accuracy±precision (25±19ms error, 5±4% relative error) among the parameters. GT3X had the least accuracy±precision (8±14% relative error) in step number estimate among the devices. Both MTx and BioStampRC detected significantly distinct gait characteristics between PwMS with different disability levels (p<0.01).ConclusionBioStampRC sensors accurately and precisely measure gait parameters in PwMS across diverse walking impairment levels and detected differences in gait characteristics by disability level in PwMS. This technology has the potential to provide granular monitoring of gait both inside and outside the clinic.

Highlights

  • Multiple sclerosis (MS) is an immune-mediated disease that affects an estimated 400,000 people in the USA, and has a worldwide prevalence of 2.5M [1]

  • Post-hoc analysis showed that MS Walking Scale (MSWS) and PDSS score were significantly different between each group (p’s

  • Our results show that the BioStampRC has comparable or improved accuracy in measuring step number and temporal gait parameters compared to commercially available research grade inertial sensors and accelerometers

Read more

Summary

Introduction

Multiple sclerosis (MS) is an immune-mediated disease that affects an estimated 400,000 people in the USA, and has a worldwide prevalence of 2.5M [1]. The MS pathology transitions into a neurodegenerative disease process associated with insufficient neurotrophic support resulting in irreversible axonal and neuronal loss [3]. This progressive disease commonly affects mobility (i.e. gait function) [4]. Accurate assessment of gait characteristics in PwMS is required to examine the severity and progression of gait impairment. Mobility impairment is common in people with multiple sclerosis (PwMS) and there is a need to assess mobility in remote settings. We apply a novel wireless, skin-mounted, and conformal inertial sensor (BioStampRC, MC10 Inc.) to examine gait characteristics of PwMS under controlled conditions. We determine the accuracy and precision of BioStampRC in measuring gait kinematics by comparing to contemporary research-grade measurement devices

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.