Abstract

Moso bamboo (Phyllostachys edulis) is a crucial species among the 500 varieties of bamboo found in China and plays an important role in providing ecosystem services. However, remote sensing studies on the invasion of Moso bamboo, especially its impact on forest biodiversity, are limited. Therefore, we explored the feasibility of using Sentinel-2 multispectral data and digital elevation data from the Shuttle Radar Topography Mission and random forest (RF) algorithms to monitor changes in forest diversity due to the spread of Moso bamboo. From October to November 2019, researchers conducted field surveys on 100 subtropical forest plots in Zhejiang Province, China. Four biodiversity indices (Margalef, Shannon, Simpson, and Pielou) were calculated from the survey data. Subsequently, after completing 100 epochs of training and testing, we developed the RF prediction model and assessed its performance using three key metrics: coefficient of determination, root mean squared error, and mean absolute error. Our results showed that the RF model has a strong predictive ability for all indices except for the Pilou index, which has an average predictive ability. These results demonstrate the feasibility of using remote sensing to monitor forest diversity changes caused by the spreading of Moso bamboo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call