Abstract
Pollinators, such as bees, often develop multi-location routes (traplines) to exploit subsets of flower patches within larger plant populations. How individuals establish such foraging areas in the presence of other foragers is poorly explored. Here we investigated the foraging patterns of pairs of bumble bees (Bombus terrestris) released sequentially into an 880m2 outdoor flight cage containing 10 feeding stations (artificial flowers). Using motion-sensitive video cameras mounted on flowers, we mapped the flower visitation networks of both foragers, quantified their interactions and compared their foraging success over an entire day. Overall, bees that were released first (residents) travelled 37% faster and collected 77% more nectar, thereby reaching a net energy intake rate 64% higher than bees released second (newcomers). However, this prior-experience advantage decreased as newcomers became familiar with the spatial configuration of the flower array. When both bees visited the same flower simultaneously, the most frequent outcome was for the resident to evict the newcomer. On the rare occasions when newcomers evicted residents, the two bees increased their frequency of return visits to that flower. These competitive interactions led to a significant (if only partial) spatial overlap between the foraging patterns of pairs of bees. While newcomers may initially use social cues (such as olfactory footprints) to exploit flowers used by residents, either because such cues indicate higher rewards and/or safety from predation, residents may attempt to preserve their monopoly over familiar resources through exploitation and interference. We discuss how these interactions may favour spatial partitioning, thereby maximising the foraging efficiency of individuals and colonies.
Highlights
Understanding how foragers distribute themselves within and among resource patches is a central question in behavioural ecology
Bumble bees foraging simultaneously in a common environment adopted different strategies depending on their experience of the flower array
That had started to establish a foraging area several hours before the arrival of newcomers, continued to exploit familiar feeding sites by increasing their frequency of floral visits and evicting newcomers when they encountered them on flowers
Summary
Understanding how foragers distribute themselves within and among resource patches is a central question in behavioural ecology. Recent studies on bumble bees collecting sucrose solution from artificial flowers (equivalent, in terms of nectar profitability, to natural flower patches) have begun to reveal how pollinators develop such movement patterns when foraging alone in highly predictable environments, by prioritizing visits to the most rewarding flowers while minimizing overall travel distances between them [14,15,16]. Whilst this is an important first step, none of these studies have yet captured the considerable additional variation in nectar rewards provided by flowers in field conditions due to the activity of other foragers competing for the same resources [17,18,19,20,21]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.