Abstract

Polymer concrete (PC) overlays are typically used in infrastructure applications, specifically bridges and parking structures, to provide durable protection to the structural system. However, PC suffers from cracking and crack propagation during its service life mostly due to fatigue. Fatigue cracking of PC results in limiting the service life of PC considerably. Monitoring of fatigue damage in PC can help extend PC service life.In this paper, we demonstrate the possible use of carbon nanotubes to monitor damage initiation and propagation in PC under fatigue loading. PC prisms were produced using epoxy polymer concrete with varying contents of multi-walled carbon nanotubes (MWCNTs). The percolation level of MWCNTs necessary to produce conductive PC was first determined. Fatigue testing using an AASHTO modified test set-up was conducted. Electrical conductivity of PC overlay was continuously measured during fatigue testing. Damage initiation and propagation in PC incorporating MWCNTs overlays can be detected and monitored.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.