Abstract

RNA molecules play an essential role in biology. In addition to transmitting genetic information, RNA can fold into unique tertiary structures fulfilling a specific biologic role as regulator, binder or catalyst. Information about tertiary contact formation is essential to understand the function of RNA molecules. Hydroxyl radicals (•OH) are unique probes of the structure of nucleic acids due to their high reactivity and small size. When used as a footprinting probe, hydroxyl radicals map the solvent accessible surface of the phosphodiester backbone of DNA and RNA with as fine as single nucleotide resolution. Hydroxyl radical footprinting can be used to identify the nucleotides within an intermolecular contact surface, e.g. in DNA-protein and RNA-protein complexes. Equilibrium and kinetic transitions can be determined by conducting hydroxyl radical footprinting as a function of a solution variable or time, respectively. A key feature of footprinting is that limited exposure to the probe (e.g., 'single-hit kinetics') results in the uniform sampling of each nucleotide of the polymer. In this video article, we use the P4-P6 domain of the Tetrahymena ribozyme to illustrate RNA sample preparation and the determination of a Mg(II)-mediated folding isotherms. We describe the use of the well known hydroxyl radical footprinting protocol that requires H(2)O(2) (we call this the 'peroxidative' protocol) and a valuable, but not widely known, alternative that uses naturally dissolved O(2)(we call this the 'oxidative' protocol). An overview of the data reduction, transformation and analysis procedures is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.