Abstract

Intelligent monitoring of endangered and rare wildlife is important for biodiversity conservation. In practical monitoring, few animal data are available to train recognition algorithms. The system must, therefore, achieve high accuracy with limited resources. Simultaneously, zoologists expect the system to be able to discover unknown species to make significant discoveries. To date, none of the current algorithms have these abilities. Therefore, this paper proposed a KI-CLIP method. Firstly, by first introducing CLIP, a foundation deep learning model that has not yet been applied in animal fields, the powerful recognition capability with few training resources is exploited with an additional shallow network. Secondly, inspired by the single-image recognition abilities of zoologists, we incorporate easily accessible expert description texts to improve performance with few samples. Finally, a simple incremental learning module is designed to detect unknown species. We conducted extensive comparative experiments, ablation experiments, and case studies on 12 datasets containing real data. The results validate the effectiveness of KI-CLIP, which can be trained on multiple real scenarios in seconds, achieving in our study over 90% recognition accuracy with only 8 training samples, and over 97% with 16 training samples. In conclusion, KI-CLIP is suitable for practical animal monitoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call