Abstract

The effect of temperature on the elasticity and structure of syndiotactic polypropylene (sPP) is investigated using a combination of WAXD and rheo-optical FTIR spectroscopy. sPP has a rich crystal structure, which leads to unique mechanical behavior. Beyond yield point, it exhibits elastic response associated with deformation-induced structure–structure transformation. The structure and orientation were measured both during and after uniaxial tensile stretching of films (up to 200%) as a function of temperature (25–70 °C). Our WAXD and rheo-FTIR results suggest that as the temperature increases, there is a reduction in the extent of helical to trans-planar conformational change upon stretching. When the strain is released, there is partial transformation of trans-planar conformation back to helical. The presence and orientation of the trans-planar conformation plays a key role on the elastic behavior of sPP beyond the yield point. Rheo-optical FTIR dichroism studies provide further insights into the elasticity in syndiotactic polypropylene. Different proportions of helical and trans-planar conformations orient to different extents. The helical conformation does not orient appreciably at higher temperature though they are present beyond the yield point. In contrast, the trans-planar chains show a significant increase in dichroism beyond the yield point, suggesting that there is a difference in mobility (orientation) of the helical and trans-planar chains. This further supports the importance of trans-planar chains on the elastic behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.