Abstract
Migration flocks have different forms, including single individuals, formations, and irregular clusters. The shape of a flock can change swiftly over time. The real-time clustering of multiple groups with different characteristics is crucial for the monitoring of dynamically changing migratory flocks. Traditional clustering algorithms need to set various prior parameters, including the number of groups, the number of nearest neighbors, or the minimum number of individuals. However, flocks may display complex group behaviors (splitting, combination, etc.), which complicate the choice and adjustment of the parameters. This paper uses a real-time clustering-based method that utilizes concepts from the algebraic graph theory. The connected graph is used to describe the spatial relationship between the targets. The similarity matrix is calculated, and the problem of group clustering is equivalent to the extraction of the partitioned matrices within. This method needs only one prior parameter (the similarity distance) and is adaptive to the group’s splitting and combination. Two modifications are proposed to reduce the computation burden. First, the similarity distance can be broadened to reduce the exponent of the similarity matrix. Second, the omni-directional measurements are divided into multiple sectors to reduce the dimension of the similarity matrix. Finally, the effectiveness of the proposed method is verified using the experimental results using real radar data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.