Abstract
Advancements in electronic data acquisition have translated into improved monitoring of victims of cardiac arrest, but initial techniques remain direct observation of pulses and respirations. The most essential monitor continues to be the electrocardiogram. However, monitoring diastolic blood pressure, myocardial perfusion pressure, and end-tidal carbon dioxide are extremely useful. Most of the current research on monitoring during cardiopulmonary resuscitation focuses on methods for analyzing ventricular fibrillation waveforms. By analyzing the waveform, defibrillation shocks may be delivered at the time when the chance of success is optimal. Low-amplitude and low-frequency fibrillation waveforms are associated with increased rates of asystole and pulseless electrical activity after defibrillation. Methods of analyzing the ventricular fibrillation waveform include measuring the amplitude and frequency and combining the contributions of amplitude and frequency by various methods to improve discrimination. Other types of monitoring being studied for their usefulness during cardiac arrests include sonography, Bispectral Index monitoring, tissue carbon dioxide monitors, and pupil observation. The test of these monitoring techniques is ultimately their ability to improve patient survival to hospital discharge, which is a major challenge for resuscitation researchers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.