Abstract

In this work, we computed and analyzed, by means of density-based descriptors, the real-time evolution of both the locally excited (LE) and charge-transfer (CT) excited states for the planar and twisted conformations of the DMABN (4-(N,N-dimethylamino)benzonitrile) molecule using real-time time-dependent density functional theory (DFT) and three different exchange-correlation energy functionals (EXC) belonging to the same family (the PBE one). Our results based on the analysis of density-based descriptors show that the underlying EXC modifies the evolution in time of the density. In particular, comparing the frequency of density reorganization computed with the three functionals (PBE, PBE0, and LC-PBE), we found that the frequency of electronic interconversion of the individual determinants involved during the dynamics increases from PBE to PBE0 and to LC-PBE. This allows us to show that there is a correlation between the delocalization of the electronic density and the frequency of reorganization. In particular, the greater the mean hole-electron distance during the dynamics, the lower is the frequency of density reorganization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.