Abstract

In this paper, a subtractive clustering fuzzy identification method and a Sugeno-type fuzzy inference system are used to monitor tile defects in tile manufacturing process. The models for the tile defects are identified by using the firing mechanical resistance, water absorption, shrinkage, tile thickness, dry mechanical resistance and tiles temperature as input data, and using the concavity defect and surface defects as the output data. The process of model building is carried out by using subtractive clustering in both the input and output spaces. A minimum error model is developed through exhaustive search of clustering parameters. The fuzzy model obtained is capable of predicting the tile defects for a given set of inputs as mentioned above. The fuzzy model is verified experimentally using different sets of inputs. This study intends to examine and deal with the experimental results obtained during various stages of ceramic tile production during 90-day period. It is believed, that the results obtained from the present study could be considered in other ceramic tiles industries, which experienced similar forms of defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.