Abstract

Quantification of the crystalline versus amorphous fraction is an important objective for the structural characterization of glass-ceramics. Owing to its well-documented ability of differentiating between crystalline and amorphous materials and its inherently quantitative character, magic-angle-spinning solid state nuclear magnetic resonance (MAS-NMR) spectroscopy is an excellent method for this objective. For the technologically important lithium disilicate glass-ceramics, the applicability of 29Si MAS-NMR is, however, seriously impeded by poor signal to noise ratios and extremely long spin–lattice relaxation times (on the order of magnitude of hours). The detection sensitivity problem can be overcome by magnetization transfer from 7Li nuclei to the 29Si spins (7Li→29Si cross-polarization). While this method is inherently non-quantitative owing to the influence of various relaxation processes involved, we show that it can be successfully calibrated to yield quantitatively reliable crystalline fractions that are similar to those determined by alternative methods (optical microscopy and X-ray powder diffraction). In addition, this method can be used to detect very low (~1%) crystallized volume fractions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.