Abstract

Accurate monitoring of crop condition is critical to detect anomalies that may threaten the economic viability of agriculture and to understand how crops respond to climatic variability. Retrievals of soil moisture and vegetation information from satellite-based remote-sensing products offer an opportunity for continuous and affordable crop condition monitoring. This study compared weekly anomalies in accumulated gross primary production (GPP) from the SMAP Level-4 Carbon (L4C) product to anomalies calculated from a state-scale weekly crop condition index (CCI) and also to crop yield anomalies calculated from county-level yield data reported at the end of the season. We focused on barley, spring wheat, corn, and soybeans cultivated in the continental United States from 2000 to 2018. We found that consistencies between SMAP L4C GPP anomalies and both crop condition and yield anomalies increased as crops developed from the emergence stage (r: 0.4–0.7) and matured (r: 0.6–0.9) and that the agreement was better in drier regions (r: 0.4–0.9) than in wetter regions (r: −0.8–0.4). The L4C provides weekly GPP estimates at a 1-km scale, permitting the evaluation and tracking of anomalies in crop status at higher spatial detail than metrics based on the state-level CCI or county-level crop yields. We demonstrate that the L4C GPP product can be used operationally to monitor crop condition with the potential to become an important tool to inform decision-making and research.

Highlights

  • Accurate crop condition assessments provide valuable information to farmers and policy-makers regarding the security and economic viability of agriculture

  • Correlations between gross primary production (GPP) anomalies and both yield anomalies and crop condition index (CCI) anomalies increased over the progression of phenological stages, with the lowest and highest correlations generally occurring at the emerged stage and the mature stage, respectively

  • Our study showed a clear difference in the ability of Level-4 Carbon (L4C) GPP to capture crop status in more arid regions vs. more humid climate regions

Read more

Summary

Introduction

Accurate crop condition assessments provide valuable information to farmers and policy-makers regarding the security and economic viability of agriculture. Farmers consider crop condition when determining where to best allocate costly inputs or to identify land management practices that maximize yields and profits. Policy-makers consider crop condition when determining where to allocate limited resources or to identify when and where safety nets are most needed during times of crisis. Crop condition assessments are considered along with demand expectations to forecast crop prices, which directly affect farm income and agricultural market volatility (Lehecka, 2014). Crop condition is often a reflection of the prevailing climatic conditions. Changes in crop condition due to climatic variability vary by crop type, farming practices, and over time with crop

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.