Abstract

Bioremediation is a sustainable and cost-effective means of contaminant detoxification. Although Cr(VI) is toxic at high concentrations, various microbes can utilise it as an electron accepter in the bioremediation process, and reduce it to the less toxic form Cr(III). During remediation, it is important to monitor the level of toxicity and effectiveness of Cr(VI) reduction in order to optimize the conditions. This study employed a whole-cell bioreporter Acinetobacter baylyi ADPWH-recA to access the degree of toxicity of different species of Cr over a range of initial concentrations. It also investigated whether Cr isotope fractionation factors were impacted by different levels of Cr toxicity (related to its concentration) and Cr(VI) reduction rates by Cr resistant bacteria Pseudomonas fluorescens LB 300. The results show that, of both Cr2O72− and CrO42−, the whole-cell bioreporter was efficient in indicating the level of genotoxicity of Cr(VI) at low concentrations and cytotoxicity at high concentrations via variations of bioluminescence. High concentrations (> 100 mg/L) of Cr(III) could also strongly induce the luminescence in the bioreporter, indicating DNA damage at such abundance. Pseudomonas fluorescens LB 300 was found to be effective in reducing Cr(VI) even when the concentration was high (40 mg/L); however, complete Cr(VI) reduction was only observed at low concentrations (< 5 mg/L), since the toxicity of high concentrations of Cr(VI) impacted the effectiveness of reduction by the bacteria. During reduction, the C53r/C52r ratio of remaining Cr(VI) increased from its initial value, and the calculated fractionation factor by bacterial Cr(VI) reduction (ε) was −3.1±0.3‰. The fractionation factor was independent of the initial Cr(VI) concentration. Therefore, a single Cr isotope fractionation factor can be effectively applied in indicating the extent of bioremediation processing of Cr(VI) over a wide range of concentrations. This significantly simplified monitoring of Cr(VI) depletion in bioremediation, since variations of ε normally indicate a change in the reduction mechanism and therefore would complicate the elucidation of processes driving the remediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call