Abstract

Early detection of corrosion can help reduce the cost of maintenance and extend the service life of structures. Acoustic emission (AE) sensing has proven to be a promising method for early detection of corrosion in reinforced concrete members. A test program is presented composed of four medium-scale prestressed concrete T-beams. Three of the beams have a length of 16 ft. 4 in. (4.98 m), and one is 9 ft. 8 in. (2.95 m). In order to corrode the specimens a 3% NaCl solution was prepared, which is representative of sea salt concentration. The beams were subjected to wet-dry cycles to accelerate the corrosion process. Two of the specimens were pre-cracked prior to conditioning in order to examine the effect of crack presence. AE data was recorded continuously while half-cell potential measurements and corrosion rate by Linear Polarization Resistance (LPR) were measured daily. Corrosion current was also being acquired constantly to monitor any change in the concrete resistivity. Results indicate that the onset of corrosion may be identified using AE features, and were corroborated with measurements obtained from electrochemical techniques. Corroded areas were located using source triangulation. The results indicate that cracked specimens showed corrosion activity prior to un-cracked specimens and experienced higher corrosion rates. The level of corrosion was determined using corrosion rate results. Intensity analysis was used to link the corrosion rate and level to AE data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call