Abstract
This work analyses the rate of recovery of the spectral signal from clearcut areas of coppice Mediterranean forests using Landsat Time Series (LTS). The analysis revealed a more rapid rate of spectral signal recovery than what was found in previous investigations in boreal and temperate forests. The rate of post-disturbance vegetation recovery is an important component of forest dynamics. In this study, we analyze the recovery of the spectral signal from forest clearcut areas in Mediterranean conditions when the coppice system of forest management is applied. We used LTS surface reflectance data (1999–2015).We generated an annual reference database of clearcuts using visual interpretation and local forest inventory data, and then derived the Normalized Difference Vegetation Index (NDVI) and Normalized Burn Ratio (NBR) spectral trajectories for these clearcuts. From these spectral trajectories, we calculated the Years to Recovery or Y2R, the number of years it takes for a pixel to return to within a specified threshold (i.e., 70%, 80%, 90%, 100%) of its pre-disturbance value. Spectral recovery rates were then corroborated using measures of canopy height derived from airborne laser scanning (ALS) data. The coppice system is associated with rapid recovery rates when compared to rates of recovery from seeds or seedlings in temperate and boreal forest conditions. We found that the Y2R derived from the spectral trajectories of post-clearcut NBR and NDVI provided similar characterizations of rapid recovery for the coppice system of forest management applied in our study area. The ALS measures of canopy height indicated that the Y2R metric accurately captured the rapid regeneration of coppice systems. The rapid rate of spectral recovery associated with the coppice system is 2–4 years, which contrasts with values reported in boreal and temperate forest environments, where spectral recovery was attained in approximately 10 years. NBR is an effective index for assessing rapid recovery in this forest system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.