Abstract

The fates of mitochondrial and plastid nucleoids during pollen development in six angiosperm species (Antirrhinum majus, Glycine max, Medicago sativa, Nicotiana tabacum, Pisum sativum, and Trifolium pratense) were examined using epifluorescence microscopy after double staining with 4',6-diamidino-2- phenylindole (DAPI) to stain DNA and with a potentiometric dye (either DiOC7 or rhodamine 123) for visualization of metabolically active mitochondria. From the pollen mother cell stage to the microspore stage of pollen development, mitochondria and plastids both contained DNA detectable by DAPI staining. However, during the further maturation preceding anthesis, mitochondrial DNA became undetectable cytologically in either the generative or the vegetative cell of mature pollen; even in germinated pollen tubes containing hundreds of metabolically active mitochondria undergoing cytoplasmic streaming, vital staining with DAPI failed to reveal mitochondrial DNA. By the mature pollen stage, plastid DNA also became undetectable by DAPI staining in the vegetative cell. However, in the generative cell of mature pollen the timing of plastid DNA disappearance as detected by DAPI varied with the species. Plastid DNA remained detectable only in the generative cells of pollen grains from species known or suspected to have biparental transmission of plastids. The apparent absence of cytologically detectable organelle genomes in living pollen was further examined using molecular methods by hybridizing organelle DNA-specific probes to digests of total DNA from mature pollen and from other organs of A. majus and N. tabacum, both known to be maternal for organelle inheritance. Mitochondrial DNA was detected in pollen of both species; thus the cytological alteration of mitochondrial genomes during pollen development does not correspond with total mtDNA loss from the pollen. Plastid DNA was detectable with molecular probes in N. tabacum pollen but not in A. majus pollen. Since the organelle DNA detected by molecular methods in mature pollen may lie solely in the vegetative cell, further study of the basis of maternal inheritance of mitochondria and plastids will require molecular methods which distinguish vegetative cell from reproductive cell organelle genomes. The biological effect of the striking morphological alteration of organelle genomes during later stages of pollen development, which leaves them detectable by molecular methods but not by DAPI staining, is as yet unknown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.