Abstract

Deformation of soil bodies and soil-structure systems generates acoustic emission (AE), which are high-frequency stress waves. Listening to this AE by coupling sensors to structural elements can provide information on asset condition and early warning of accelerating deformation behaviour. There is a need for experimentation to model the propagation of AE in buried pipe systems to enhance understanding of real behaviour. Analytical solutions are often based on many assumptions (e.g. homogeneity, isotropy, boundary conditions and material properties) and cannot exactly represent the behaviour of the in situ system. This paper details a series of experiments conducted on buried pipes to investigate AE attenuation in pipes due to couplings and soil surround. The attenuation coefficients reported provide guidance to engineers for designing sensor spacing along buried pipes for monitoring ground deformations, and active waveguide installation depths for slope deformation monitoring. Attenuation coefficients have been quantified for both air–pipe–air and air–pipe–soil trilayer systems for the frequency range of 20–30 kHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.