Abstract

With the emerging trend of personalized cancer treatment, there is a need to develop noninvasive/minimally invasive techniques for treatment monitoring. In this regard, in this work fluorescence analysis of blood plasma of breast cancer patients has been used for the evaluation of response to treatment. This approach delivers information not only about the change in biochemical constituents but also about the altered metabolic pathway. Spectral deconvolution method is employed to compute the fluorescence intensity, peak wavelength, and full-width half maxima for different endogenous fluorophores. The fluorescence measurements were made on blood plasma collected from 10 normal subjects, 10 pre-treated cancer patients, and 10 post-treated patients. Besides, variations in relative concentration of tryptophan, collagen, NADH, and FAD, peak shifts and broadening of peaks are observed for tryptophan, NADH, and FAD, in blood plasma of pre-treated cancer patients indicating both biochemical and microenvironmental changes at cellular level. Further, the spectral profile of blood plasma of post-treated patients found to be similar to blood plasma of normal subjects. Linear discriminant analysis showed that pre-treated and post-treated breast cancer is discriminated with a sensitivity and specificity of 100% and 100% respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call