Abstract

Autophagy, from the Greek auto (self) and phagy (eating), is a self-degradative process critical for eukaryotic cell homeostasis. Its rapidly responsive, highly dynamic nature renders this process essential for adapting to and offsetting acute/harsh conditions such as starvation, organelle dysfunction, and deoxyribonucleic acid (DNA) damage. Autophagy involves an intricate network of interacting factors with multiple levels of control. Importantly, dysregulation of autophagy has been linked to numerous debilitating pathologies, including cancer and neurodegenerative conditions in humans. Methods to monitor and quantify autophagic activity reliably are essential both for studying the basic mechanisms of autophagy and for dissecting its involvement in disease. The nematode Caenorhabditis elegans is a particularly suitable model organism to effectively visualize and study autophagy, in vivo, in a physiological and pathological context due to its optical transparency, experimental malleability, and precise developmental and anatomical characterization. Here, we outline the main tools and approaches to monitor and measure autophagic responses in C. elegans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call