Abstract

Fraeylemaborg is a noble house in an earthquake-stricken area of the Netherlands due to the induced seismicity events in the region. The structure is located in the middle of the town of Slochteren which gave its name to the largest gas field in the world upon its discovery in 1959. The gas extraction has caused small-magnitude shallow earthquakes during the last decade, damaging not only the residential inventory but also the historical structures in the area. The main building of Fraeylemaborg sits on an artificial island surrounded by water channels, rendering the problem of earthquake response even more complicated. A small part of the main structure on the island was built in the 14th century, while the construction of additional parts and morphological alterations had taken place until the 18th century. The structure has been subjected to several small magnitude earthquakes causing damages on the load bearing system. An extensive renovation and repair of damages took place in recent years, however the latest seismic events imposed again damage to the structure. This paper presents a project of monitoring, assessment and diagnosis of problems for the Fraeylemaborg, the most important “borg” of the region, underlining the particularities of the induced seismicity problem. The FE model has been calibrated by using ambient vibration tests. Combination of earthquake and soil settlement loads have been applied on the calibrated model. The paper develops scenarios that help in explaining the reasons behind the damages on this structure during the recent shallow and low-magnitude induced seismicity earthquakes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call