Abstract

Flow cytometry-, ELISA-, and ELISpot-based in vitro assays have played important roles in assessing the frequencies and functional competence of antigen-specific T cells in the setting of infectious disease and cancer. Such methods have helped in the development of antigen-specific vaccines for human disease prevention/treatment and have also served as a foundation for the monitoring of patients' immune responsiveness based on antigen-induced T cell expression of effector molecules (such as cytokines, chemokines, or proteins associated with cytolysis) as a consequence of therapeutic intervention. The following method outlines a protocol employing quantitative real-time PCR (qRT-PCR) with SYBR(®) green technology to examine antigen-specific CD8(+) T cell responses based on their rapid up-regulation of IFN-γ mRNA transcription following in vitro stimulation with peptide (antigen)-loaded, autologous peripheral blood mononuclear cells (PBMCs). The advantages of the current qRT-PCR approach over protein-based detection methods include the sensitivity to distinguish resident CD8(+) T cell responses against multiple antigens without the need to artificially pre-expand T cell numbers ex vivo, as is commonly required for the latter in vitro assay systems. Following qRT-PCR setup and run, the level of human IFN-γ transcript is normalized to CD8 transcript expression level, with data reported as the relative fold change in this index versus a patient-matched PBMC sample stimulated with a negative control peptide (e.g., HIV NEF).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call