Abstract

Additive manufacturing technologies have progressed in the past decades, especially when used to print biofunctional structures such as scaffolds and vessels with living cells for tissue engineering applications. Part quality and reliability are essential to maintaining the biocompatibility and structural integrity needed for engineered tissue constructs. As a result, it is critical to detect for any anomalies that may occur in the 3D-bioprinting process that can cause a mismatch between the desired designs and printed shapes. However, challenges exist in detecting the imperfections within oftentimes transparent bioprinted and complex printing features accurately and efficiently. In this study, an anomaly detection system based on layer-by-layer sensor images and machine learning algorithms is developed to distinguish and classify imperfections for transparent hydrogel-based bioprinted materials. High anomaly detection accuracy is obtained by utilizing convolutional neural network methods as well as advanced image processing and augmentation techniques on extracted small image patches. Along with the prediction of various anomalies, the category of infill pattern and location information on the image patches can be accurately determined. It is envisioned that using our detection system to categorize and localize printing anomalies, real-time autonomous correction of process parameters can be realized to achieve high-quality tissue constructs in 3D-bioprinting processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.