Abstract

Summer temperatures in the Lower Snake River can be altered by releasing cold waters that originate from deep depths within Dworshak Reservoir. These cold releases are used to lower temperatures in the Clearwater River, a major tributary to the Lower Snake River, and to improve hydrodynamic and water quality conditions for migrating aquatic species. This project monitored the complex three-dimensional density currents at the Clearwater and Snake River confluence and the processes that led to stratification of Lower Granite Reservoir (LGR) during the late spring, summer, and fall of 2002. In addition to monitoring the LGR environment, a three-dimensional hydrodynamic and water quality model was also applied. By utilizing both field data and a numerical model, a more holistic view of the 3-D density currents was discovered than by either method alone. During this process, it was discovered that several predictable stratification patterns would develop depending upon the discharge ratio and the thermal gradient between the two rivers. These results illustrate the complex hydrodynamic structure at the confluence of the Clearwater and Snake Rivers, which has previously been shown by fish biologists to be a difficult passage zone for migrating salmonids of various life stages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.