Abstract

Experiments were carried out between September 2009 and August 2010 at Bei-shi and Gao-mei in Taichung, and at Quan-xing, Chang-Hua and He-mei in Changhua. Dry-deposition flux models of metallic elements Mn, Fe, Zn, Cu and Cr bound to air particulates at five characteristic sampling sites were developed. Results concerning metallic elements Mn, Zn, Cr and Cu, revealed that Zhang’s model yielded the best results concerning the dry-deposition flux of particles of size 10 μm at Bei-shi, Chang-Hua, He-mei, Quan-xing and Gao-mei sampling sites. For the metallic element Cr, the model of Noll and Fang exhibited the best dry-deposition flux results for particles of size 10 μm at Bei-shi, He-mei and Gao-mei sampling sites. For metallic element Fe, the model of Noll and Fang yielded the best results for the dry-deposition flux of particles of size 5.6 μm at Bei-shi, Chang-Hua, He-mei and Quan-xing sampling sites. For metallic element Fe, Zhang’s model yielded the best dry-deposition flux results for particles of size 5.6 μm at the Gao-mei sampling site. For ambient air particles, Zhang’s model yielded the best average calculated/modeled ratios for particles of size 3 μm, and the model of Noll and Fang yielded the best average calculated/modeled for particles of size 10 μm. Finally, the models of both Zhang and Noll and Fang yielded more accurate predictions of the dry-deposition of metallic elements in ambient air when the particles were larger than 5.6 μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.