Abstract

In this article, the monitoring and analysis of anesthesia depth status data would be studied through neuroscience. Through a controlled experiment, the monitoring accuracy of traditional anesthesia status monitoring algorithm and neuroscience-based anesthesia status monitoring algorithm was studied, and the information entropy and oxygen saturation of electroencephalogram signals in patients with different anesthesia depth were explored. The experiment proved that the average monitoring accuracy of the traditional anesthesia state monitoring algorithm in patients' blood drug concentration and oxygen saturation reached 95.55 and 95.00%, respectively. In contrast, the anesthesia state monitoring algorithm based on neuroscience performs better, with the average monitoring accuracy of drug concentration and oxygen saturation reaching 98.00 and 97.09%, respectively. This experimental result fully proved that the monitoring performance of anesthesia state monitoring algorithms based on neuroscience is better. The experiment proved the powerful monitoring ability of the anesthesia state monitoring algorithm based on neuroscience used in this article, and explained the changing trend of brain nerve signals and oxygen saturation of patients with different anesthesia depth states, which provided a new research method for the monitoring and analysis technology of anesthesia depth state data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call